
High Performance MPI-2 One-Sided Communication over InfiniBand

Weihang Jiang Jiuxing Liu Hyun-Wook Jin Dhabaleswar K. Panda

William Gropp Rajeev Thakur

Computer and Information Science
The Ohio State University
Columbus, OH 43210

jiangw, liuj, jinhy, panda @cis.ohio-state.edu

Mathematics and Computer Science Division
Argonne National Laboratory

Argonne, IL 60439
gropp, thakur @mcs.anl.gov

Abstract

Many existing MPI-2 one-sided communication imple-
mentations are built on top of MPI send/receive operations.
Although this approach can achieve good portability, it suf-
fers from high communication overhead and dependency
on remote process for communication progress. To address
these problems, we propose a high performanceMPI-2 one-
sided communication design over the InfiniBand Architec-
ture. In our design, MPI-2 one-sided communication op-
erations such as MPI Put, MPI Get and MPI Accumulate
are directly mapped to InfiniBand Remote Direct Memory
Access (RDMA) operations.
Our design has been implemented based on MPICH2

over InfiniBand. We present detailed design issues for this
approach and perform a set of micro-benchmarks to char-
acterize different aspects of its performance. Our per-
formance evaluation shows that compared with the de-
sign based on MPI send/receive, our design can improve
throughput up to 77%, and reduce lantency and synchro-
nization overhead up to 19% and 13%, respectively. Under
certain process skew, the bad impact can be significantly re-
duced by new design, from 41% to nearly 0%. It also can
achieve better overlap of communication and computation.

1 Introduction
In the area of high performance computing, MPI [9]

has been the de facto standard for writing parallel applica-
tions. The original MPI standard (MPI-1) specifies a mes-
sage passing communication model based on send and re-

This research was supported in part by Department of Energy’s Grant
#DE-FC02-01ER25506, and National Science Foundation’s grants #CCR-
0204429 and #CCR-0311542. This work was also supported in part by the
Mathematical, Information, and Computational Sciences Division subpro-
gram of the Office of Advanced Scientific Computing Research, Office of
Science, U.S. Department of Energy, under Contract W-31-109-ENG-38.

ceive operations. In this model, communication involves
both sender and receiver sides, and the synchronization
is achieved implicitly through communication operations.
This model is also called two-sided communication.
As an extension to MPI-1, the MPI-2 [14] standard

introduces the one-side communication model. In this
model, one process specifies all communication parame-
ters, and the synchronization is done explicitly to ensure
the completion of communication. One-sided communi-
cation operations in MPI-2 include MPI Put, MPI Get and
MPI Accumulate.
One common way to implement MPI-2 one-sided com-

munication is to use existingMPI two-sided communication
operations such asMPI Send andMPI Recv. This approach
has been used in several popular MPI implementations, in-
cluding the current MPICH2 [1] and SUN MPI [5]. Al-
though this approach can improve portability, it has some
potential problems:

Protocol overhead: Two-sided communication oper-
ations incur many overheads such as memory copy,
matching of send and receive operations and hand-
shake in Rendezvous protocol. These overheads
decrease communication performance for one-sided
communication.

Dependency on remote process: The communication
progress of one-side communication operations are de-
pendent on the remote process in this approach. As a
result, process skew may significantly degrade com-
munication performance.

Recently, InfiniBand [11] has entered the high perfor-
mance computing market. InfiniBand architecture supports
Remote Direct Memory Access (RDMA). RDMA opera-
tions enable direct access to the address space of a remote
process and their semantics match quite well with MPI-2

1

one-sided communication. In our recent work [13], we have
proposed a design which uses RDMA to implement MPI
two-sided communication. However, since its MPI-2 one-
sided communication operations are implemented on top of
two-sided communication, this implementation still suffers
from the problems mentioned above.
In this paper, we propose using InfiniBand RDMA op-

erations directly to provide efficient and scalable one-sided
communication in MPI-2. Our RDMA based design maps
MPI Put and MPI Get directly to InfiniBand RDMA write
and RDMA read operations. Therefore, one-sided commu-
nication can avoid the protocol overhead in MPI send and
receive operations. Since RDMA write and RDMA read
in InfiniBand are transparent to the remote side, MPI one-
sided communication can make progress without its partic-
ipation. Therefore, our design is less prone to process skew
and also allows better communication/computation overlap.
In this work, we present detailed design issues in our

RDMA based approach. We have implemented our design
based on our MPICH2 implementation over InfiniBand. We
use a set of micro-benchmarks to evaluate its performance.
These micro-benchmarks characterize different aspects of
MPI-2 one-sided communication, including communica-
tion performance, synchronization overhead, dependency
on remote process, communication/computation overlap
and scalability. Our performance evaluation shows that the
RDMA based design can bring improvements in all these
aspects. It can improve bandwidth up to 77% and reduce
latency and synchronization overhead up to 19% and 13%,
respectively. Under certain process skew, the bad impact
can be significantly reduced by new design, from 41% to
nearly 0%.
The remaining part of the paper is organized as follows:

In Section 2, we provide background information about
MPI-2 one-sided communication and InfiniBand. In Sec-
tion 3, we introduce the current design for MPI-2 one-sided
communication inMPICH2. We describe our design in Sec-
tion 4. In Section 5, we present performance evaluation re-
sults. We discuss related work in Section 6 and conclude
the paper in Section 7.

2 Background
2.1 MPI-2 One-Sided Communication
In MPI-2 one-sided communicationmodel, a process can

access another process’s memory address space directly.
UnlikeMPI two-sided communication in which both sender
and receiver are involved for data transfer, one-sided com-
munication allows one process to specify all parameters
for communication operations. As a result, it can avoid
explicit coordination between the sender and the receiver.
MPI-2 defines origin as the process that performs the one-
sided communication, and target as the process in which
the memory is accessed. A memory area on target to which

origin can access through the one-sided communication is
called a window. Several one-sided communication opera-
tions are defined inMPI-2. They areMPI Put, MPI Get and
MPI Accumulate. MPI Put and MPI Get functions transfer
the data to and from a window in a target process, respec-
tively. The MPI Accumulate function combines the data
movement to target process with a reduce operation.
It should be noted that returning from communica-

tion operations such as MPI Put does not guarantee the
completion of the operations. To make sure an one-
sided operation is finished, explicit synchronization op-
erations must be used. In MPI-2, synchronization op-
erations are classified as active and passive. The ac-
tive synchronization involves both sides of communica-
tion while passive synchronization only involves the origin
side. In Figure 1, we show an example of MPI-2 one-sided
communication with active synchronization. We can see
that synchronization is achieved through four MPI func-
tions: MPI Win start, MPI Win complete, MPI Win post
and MPI Win wait. MPI Win post and MPI Win wait
specify an exposure epoch in which other processes can
access a memory window in this process. MPI Win start
and MPI Win complete specify an access epoch in which
the current process can use one-side communication op-
erations such as MPI Put to access memory in the target
process. Multiple operations can be issued in the access
epoch to amortize the overhead of synchronization. The
completion of these operations are not guaranteed until the
MPI Win complete returns. The active synchronization can
also be achieved through MPI Win fence.

Figure 1. MPI-2 One-Sided Communication
with Active Synchronization

2.2 InfiniBand
The InfiniBand Architecture is an industry standard

which defines communication and infrastructure for inter-
processor communication and I/O. InfiniBand supports both
channel and memory semantics. In channel semantics,
send/receive operations are used for communication. In
memory semantics, InfiniBand supports RDMA operations
such as RDMA write and RDMA read. RDMA operations
are one-sided and do not incur software overhead at the
other side. In these operations, memory buffers must first be

2

registered before they can be used for communication. Then
the sender (initiator) starts RDMA by posting an RDMA de-
scriptor which contains both the local data source addresses
(multiple data segments can be specified at the source) and
the remote data destination address. The operation is trans-
parent to the software layer at the receiver side. We should
note that the semantic of InfiniBand RDMA operations is
similar to that of MPI-2 one-sided communication. There-
fore, it is expected that if we implement the one-sided com-
munication with RDMA operations, we can achieve high
performance and offload the communication from the target
completely.
InfiniBand also provides remote atomic operations such

as Compare-and-Swap and Fetch-and-Add. These opera-
tions can read and then change the content of a remote mem-
ory location in an atomic manner.

3 Send/Receive Based MPI-2 One-Sided
Communication Design
As we have mentioned, MPI-2 one-sided communica-

tion can be implemented using MPI two-sided communi-
cation operations such as MPI Send, MPI Recv and their
variations (MPI Isend, MPI Irecv, MPI Wait, etc.). (In the
following discussions, we use “send” and “receive” to re-
fer to different forms of MPI Send and MPI Recv, respec-
tively.) We call this send/receive based approach. The cur-
rent MPICH2 implementation uses such an approach. In
this section, we will discuss MPICH2 as an implementation
example of one-sided communication.
MPICH [8], developed by Argonne National Laboratory,

is one of the most popular MPI implementations. The orig-
inal MPICH provides supports for MPI-1 standard. As a
successor of MPICH, MPICH2 [1] supports not only MPI-
1 standard, but also MPI-2 extensions such as one-sided
communication, dynamic process management, and MPI
I/O. AlthoughMPICH2 is still under development, beta ver-
sions are already available for developers. Our discussion is
based on MPICH2 over InfiniBand (MVAPICH2)1 [13].

3.1 Communication Operations
For the MPI Put operation, the origin process first sends

information about this operation to the target. This infor-
mation includes target address, data type information, etc.
Then the data itself is also sent to the target. After receiving
the operation information, the target uses another receive
operation for the data. In order to perform the MPI Get
operation, first the origin process sends a request to the
target, which informs it the data location, data type and
length. After receiving the request, the target process sends
the requested data to the origin process. The origin fin-
ishes the operation by receiving the data to its local buffer.

1The current MVAPICH2 implementation is based onMPICH2 version
0.96p1. MVAPICH2 is available from [17].

For MPI Accumulate, the origin process uses a similar ap-
proach to send the data to the target process. Then the target
receives the data and performs a local reduce operation.
The send/receive based approach has very good porta-

bility. Since it only depends on MPI two-sided communi-
cation, its implementation is completely platform indepen-
dent. However, it also has many drawbacks. First, it suf-
fers from high protocol overhead in MPI send/receive oper-
ations. For example,MPI send/receive operations uses Ren-
dezvous protocol for large messages. In order to achieve
zero-copy, the current MPICH2 uses a handshake in the
Rendezvous protocol to exchange buffer addresses. How-
ever, since in one-sided communication, target buffer ad-
dress information is available at the origin process, this
handshake is unnecessary and brings degradation of com-
munication performance. In addition, MPI send/receive
may involve other overheads such as send/receive matching
and extra copies.
Since the target is actively involved in the send/receive

based approach, the overhead at the target process increases.
The target process may become a performance bottleneck
because of this increased overhead.
The send/receive based approach also makes the origin

process and the target process tightly coupled in communi-
cation. The communication of origin process depends heav-
ily on the target to make progress. As a result, process skew
between the target and the origin may significantly degrade
communication performance.

Figure 2. Send/Receive Based One-Sided
Communication Implementation

3.2 Synchronization Operations

MPICH2 implements the active synchronization for the
one-sided communication, the passive synchronization is
still under development. Therefore, we focus on active syn-
chronization in this paper.

3

In MPI-2 one-side communication, synchronization
can be done using MPI Win start, MPI Win complete,
MPI Win post and MPI Win wait. At the origin
side, communication is guaranteed to finish only after
MPI Complete. Therefore, implementors have a lot of flex-
ibility with respect to when to carry out the actual com-
munication. In the send/receive based approach, com-
munication involves both sides. Since the information
about the communication is only available at the ori-
gin side, the target needs to be explicitly informed about
this information. One way to address this problem in
send/receive based approaches is to delay communication
until MPI Win complete. Within this function, the ori-
gin sends information about all possible operations. In
MPI Win wait, the target receives this information and
takes appropriate actions. An example of send/receive
based implementation is shown in Figure 2.
Delayed communication used in send/receive based ap-

proach allows for certain optimizations such as combining
of small messages to reduce per-message overhead. How-
ever, since the actual communication does not start until
MPI Complete, the communication cannot be overlapped
with computation done in the access epoch. This may lead
to degraded overall application performance.
In the current MPICH2 design, the actual communica-

tion starts when there are enough one-sided communication
operations posted to cover the cost of synchronization. This
design can potentially take advantage of the optimization
opportunities in delayed communication and also allow for
communication/computation overlap. However, since one-
sided communication is built on top of send/receive, the ac-
tual overlap depends on how the underlying send/receive
operations are implemented. In many MPI implementa-
tions, sending/receiving a large message goes through Ren-
dezvous protocol, which needs host intervention for a hand-
shake process before the data transfer. In these cases, good
communication/computation overlap is difficult to achieve.

4 RDMA Based MPI-2 One-Sided Commu-
nication Design
As we have described in Section 3, one-sided commu-

nication in MPICH2 is currently implemented based on
MPI send/receive operations. Therefore, it still suffers from
the limitation of the two-sided communication design even
though the MVAPICH2 [13]. In this section, we discuss
how to utilize InfiniBand features such as RDMA opera-
tions to address these potential problems. MPICH2 has a
flexible layered architecture in which implementations can
be done at different levels. Our MVAPICH2 implementa-
tion over InfiniBand [13] [17] was done using the RDMA
Channel Interface. However, this interface currently does
not provide us with direct access to all the RDMA and
atomic functions in InfiniBand. To address this issue, we

use a customized interface to expose these functionalities to
the upper layer and implement our design directly over this
interface. The basic structures of our design and the original
design are shown in Figure 3.

Figure 3. Design Architecture

4.1 Communication Operations

We implement theMPI Put operationwith RDMAwrite.
Through exchangingmemory addresses at window creation
time, we can keep record of all target memory addresses on
all origin processes. When MPI Put is called, an RDMA
write operation is used, which directly transfers data from
memory in the origin process to remote memory in the
target process, without involving the target process. The
MPI Get operation is implemented with the RDMA read
operation in InfiniBand. Based on InfiniBand RDMA and
atomic operations, we have designed the accumulate oper-
ation as follows: The origin fetches the remote data from
target using RDMA read, performs a reduce operation, and
updates remote data by using RDMA write. Since there
may be more than one origins, we use the Compare-and-
Swap atomic operation to ensure mutual exclusive access.
By using RDMA, we can avoid protocol overhead of

two-sided communication. For example, the handshake in
Rendezvous protocol is avoided. Also, the matching be-
tween send and receive operations is no longer needed. So
the overhead associated with unexpected/expected message
queue maintenance, tag matching and flow control is elimi-
nated.
More importantly, the dependency on remote pro-

cess for communication progress is reduced. Unlike the
send/receive based approach, using RDMA operations di-
rectly does not involve the remote process. Therefore, the
communication can make progress even when the remote
process is doing computation. As a result, our implemen-
tation suffers much less from process skew. Moreover, our
design exploiting RDMA operations can make implemen-
tation of passive one-sided communication much easier be-
cause the target is not required to respond to one-sided com-
munication operations.

4

4.2 Synchronization Operations

In some send/receive based designs, actual communica-
tion is delayed until MPI Win complete is called. In our
design, the one-sided communication will start as soon as
the post operation is called. In our implementation, the ori-
gin process maintains a bit vector. Each bit represents the
status of a target. A target uses RDMA write to change the
corresponding bit. By checking the bits, the origin process
can get synchronization information and start communica-
tions.
Targets can not leave MPI Win wait until communica-

tion has been finished. Therefore origin processes need to
inform the targets after they have completed communica-
tion. For this purpose we also use RDMA write to achieve
better performance. Before leaving the MPI Win wait op-
eration, the targets check to make sure all origin pro-
cesses have completed communication. An example of this
RDMA based implementation is shown in Figure 4.

Figure 4. RDMA Based One-Sided Communi-
cation Implementation

4.3 Other Design Issues

By using RDMA, we potentially can achieve better per-
formance. However, it also introduces several design chal-
lenges.
An important issue we should consider in exploiting

RDMA operations is the memory registration. Before per-
forming any RDMA operation, both source and destination
data buffers need to be registered. The memory registration
is an expensive operation. Therefore, it can degrade com-
munication performance significantly if done in the critical
path. All memory buffers for the one-sided communication
on the target processes are declaredwhen the window is cre-
ated. Thus, we can avoid memory registration overheads by
registering the memory buffers at the window creation time.
For memory buffers at the origin side, pin-down cache [10]

is used to avoid registration overhead for large messages.
For small messages, we copy them to a pre-registered buffer
to avoid registration cost.
Another important issue is to handle user-defined data

type. The original approach requires data type processing
at the target side. With RDMA operations, we can avoid
this overhead by initiating multiple RDMA operations. Cur-
rently, our design only deals with simple data types. For
complicated non-contiguous data types, we fall back on the
original send/receive based implementation.

5 Performance Evaluation
In this section, we perform a set of micro-benchmarks to

evaluate the performance of our RDMA based MPI-2 one-
sided communication design and compare them with the
original design in MPICH2. We have considered various
aspects of MPI-2 one-sided communication such as syn-
chronization overhead, data transfer performance, commu-
nication and computation overlap, dependency on remote
process and scalability with multiple origin processes.
We focus on active one-sided communication in the

performance evaluation. Our tests use MPI Win start,
MPI Win complete, MPI Win post and MPI Win wait
functions for synchronization. However, most of the con-
clusions in this section are also applicable to programs us-
ing MPI Win fence.

5.1 Experimental Testbed
Our experimental testbed consists of a cluster system

with 8 SuperMicro SUPER P4DL6 nodes. Each node
has dual Intel Xeon 2.40 GHz processors with a 512K L2
cache and a 400 MHz front side bus. The machines are
connected by Mellanox InfiniHost MT23108 DualPort 4X
HCA adapter through an InfiniScale MT43132 Eight 4x
Port InfiniBand Switch. The HCA adapters work under the
PCI-X 64-bit 133MHz interfaces. We used the Linux Red
Hat 7.2 operating system with 2.4.7 kernel. The compilers
we used were GNUGCC 2.96 and GNU FORTRAN 0.5.26.

5.2 Latency
For MPI two-sided communication, a ping-pong latency

test is often used to characterize its performance. In this
subsection, we use a similar test for MPI-2 one-side com-
munication. The test consists of multiple iterations using
two processes. Each iteration consists of two epochs. In
the first epoch, the first process does an MPI Put operation.
In the second epoch, the second process does an MPI Put
operation. We then report the time taken for each epoch.
Figure 5 compares the ping-pong latency of our RDMA

based design with the originalMPICH2. We can see that the
RDMA based approach can improve the latency. For small
messages, it reduces latency from 15.6 s to 12.6 s (19%
improvement). For large messages, since the handshake in

5

 12

 14

 16

 18

 20

 22

 24

 26

4 16 64 256 1K 4K

Ti
m

e
(u

s)

Message Size (Bytes)

Original
RDMA

 0
 50

 100
 150
 200
 250
 300
 350
 400

8K 16K 32K 64K 128K 256K

Ti
m

e
(u

s)

Message Size (Bytes)

Original
RDMA

Figure 5. Ping-Pong Latency

Rendezvous protocol is avoided, it also gives better perfor-
mance. The improvement is up to 17 s.
A bi-directional latency test is often used to compare

the performance of one-sided communication to two-sided
communication. In this test, both sides send a message
to the other side. In the one-sided version, the test is
done using MPI Put and MPI Win fence. In the two-sided
version, the test is done using MPI Isend, MPI Irecv and
MPI Waitall. Figure 6 shows the performance results. We
can observe that for very small messages, two-sided com-
munication performs better because it does not use ex-
plicit synchronization. For one-sided communication, our
RDMA based design always performs better than the orig-
inal design. For messages larger than 4KB, it even outper-
forms two-sided communication.

 5
 10
 15
 20
 25
 30
 35
 40
 45

 4 16 64 256 1024 4096

Ti
m

e
(u

s)

Message Size (Bytes)

Original
RDMA

Two-Sided

Figure 6. Bi-Directional Latency

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

4 16 64 256 1K 4K 16K 64K 256K

Ba
nd

wi
dt

h
(M

B/
s)

Message Size (Bytes)

Original-Put
RDMA-put

Figure 7. MPI Put Bandwidth
5.3 Bandwidth
In applications using MPI-2 one sided operations, usu-

ally multiple communication operations are issued in each
epoch to amortize the synchronization overhead. Our band-
width test can be used to characterize performance in this

 0
 100
 200
 300
 400
 500
 600
 700
 800

4 16 64 256 1K 4K 16K 64K 256K

Ba
nd

wi
dt

h
(M

B/
s)

Message Size (Bytes)

Original-Get
RDMA-Get

Figure 8. MPI Get Bandwidth

 10

 15

 20

 25

 30

 35

 40

 1 2 3 4 5 6 7

Ti
m

e
(u

s)

Number of Origins

Original
RDMA

Figure 9. Synchronization Overhead

 1200

 1400

 1600

 1800

 2000

 1 2 3 4 5 6 7 8 9 10

Ti
m

e
pe

r I
te

ra
tio

n

Number of Computation Loops

Original
RDMA

Figure 10. Overlap Test Results

 800

 1000

 1200

 1400

 1600

 1800

 2000

 1 2 3 4 5 6 7 8 9 10

Ti
m

e
pe

r I
te

ra
tio

n

Number of Computation Loops

Original
RDMA

Figure 11. Process Skew Test Results

6

scenario. This test consists of multiple epochs. In each
epoch,WMPI Put or MPI Get operations are issued where
W is a pre-defined burst size.
Figures 7 and 8 show the bandwidth results of MPI Put

and MPI Get with a burst size(W) of 16. We can see
that the RDMA based approach always performs better for
MPI Put. The improvement can be up to 77% for certain
message size. For 256KBmessages, it delivers a bandwidth
of 865MB/. (Note that unless stated otherwise, the unit MB
in this paper is an abbreviation for bytes.)
However, we also observe that the RDMA based ap-

proach does not perform as well as the original approach
for MPI Get with small messages. This is because RDMA
read is used in our new design for MPI Get while the origi-
nal approach uses RDMAwrite. The bandwidth drop is due
to the performance difference between InfiniBand RDMA
read and RDMA write.

5.4 Synchronization Overhead

In MPI-2 one-sided communication, synchronization
must be done explicitly to make sure data transfer has been
finished. Therefore, the overhead of synchronization has
great impact on communication performance. To char-
acterize this overhead, we use a simple test which calls
only MPI-2 synchronization functions (MPI Win start,
MPI Win complete, MPI Win post and MPI Win wait) for
multiple iterations. The test is done using one target process
with multiple origin processes.
Figure 9 shows the time taken for each iteration for

the original design and our RDMA based design. We can
see that our new design slightly reduces synchronization
time. When there is one origin, synchronization time is
reduced from 16.52 microseconds to 14.78 microseconds
(13% improvement). This is because we use InfiniBand
level RDMA operations instead of calling MPI send and re-
ceive functions for synchronization. We have also done the
test for one origin process with multiple target processes
and the results are similar to Figure 9.

5.5 Communication/Computation Overlap

As we have mentioned, by using RDMA, we can possi-
bly achieve better overlapping of communication and com-
putation, which may lead to improved application perfor-
mance. In this subsection, we have designed an overlap test
to measure the ability to overlap communication and com-
putation for different one-sided communication implemen-
tations.
The overlap test is very similar to the bandwidth test.

The difference is that we have inserted a number of com-
putation loops after each communication operation. Each
computation loop increases a counter for 1,000 times. Fig-
ure 10 shows how the average time for one iteration of the
test changes when we increase the number of computation

loops for 64KB messages. We can see that the RDMA
based design allows overlap of communication and com-
putation and therefore its performance is not affected by in-
creasing computation time. However, the original design
shows lower performance when the computation increases.

5.6 Impact of Process Skew
As we have discussed, one of the advantages of using

InfiniBand RDMA to implement MPI-2 one-sided commu-
nication is that the communication can make progress with-
out depending on the target process. Therefore, skew be-
tween the origin and the target process will have less im-
pact on the communication performance. Our process skew
test is based on the bandwidth test. Process skew is em-
ulated by adding different number of computation loops
(with each loop increasing a counter for 10,000 times) be-
tween MPI Win post and MPI Win wait in the target pro-
cess.
Figure 11 shows the performance results for 64KB mes-

sages. We can see that process skew does not affect the
RDMA based approach at all. However, the performance of
the original design drops significantly with the increase of
process skew.

 500
 550
 600
 650
 700
 750
 800
 850
 900
 950

 1000

 1 2 3 4 5 6 7

Ag
gr

eg
at

ed
 B

an
dw

id
th

Number of Orgin Processes

Original
RDMA

Figure 12. Aggregated Bandwidth with Multi-
ple Origin Processes

5.7 Performance with Multiple Origin Processes
Scalability is very important for MPI-2 designs. In MPI-

2 one-sided communication, it is possible for multiple ori-
gin processes to communicate with a single target process.
Figure 12 shows the aggregated bandwidth of all origin pro-
cesses in this scenario. Here we use 64KB as message size
and 16 as burst size(W). We should note that the aggregated
bandwidth is limited by the PCI-X bus at the target node.
We can observe that since the RDMA based design incurs
very little overhead at the target process, it reaches a peak
bandwidth of over 920MB/s even with a small number of
origin processes. The original design can only deliver a
maximum bandwidth of 895MB/s.

6 Related Work
Besides MPI, there are other programming models that

uses one-sided communication. Some of the examples are

7

ARMCI [16], BSP [7] and GASNET [4]. These program-
ming models use one-sided communication as the primary
communication approach while in MPI, both one-sided and
two-sided communication are supported.
There have been studies regarding implementing one-

sided communication in MPI-2. Similar to the current
MPICH2, work in [5] describes an implementation based
on MPI two-sided communication. MPI-2 one-sided com-
munication has also been implemented by taking advantage
of globally shared memory in some architectures [12, 15].
For distributed memory systems, some of the existing stud-
ies have exploited the ability of remotely accessing another
process’s address space provided by the interconnect to im-
plement MPI-2 one-sided operations [2, 18, 3]. In this pa-
per, our target architecture is InfiniBand, which provides
very flexible RDMA as well as atomic operations. We focus
on the performance improvement of using these operations
compared with the send/receive based approach.
Work in [6] provides a performance comparison of sev-

eral existing MPI-2 implementations. They have used a
ping-pong benchmark to evaluate one-sided communica-
tion. However, their results do not include the MPICH2
implementation. In this paper, we focus onMPICH2 and in-
troduce a suite of micro-benchmarks which provide a more
comprehensive analysis of MPI-2 one-sided operations, in-
cluding communication and synchronization performance,
communication/computation overlap, dependency on re-
mote process and scalability.

7 Conclusions and Future Work
In this paper, we have proposed a design of MPI-2 one-

sided communication over InfiniBand. This design elimi-
nates the involvement of targets in one-sided communica-
tion completely by utilizing InfiniBand RDMA operations.
Through performance evaluation, we have shown that

our design can achieve lower overhead and higher commu-
nication performance. Moreover, experimental results have
shown that the RDMA based approach allows for better
overlap between computation and communication. It also
achieves better scalability with multiple number of origin
processes.
As future work, we are working on applying the RDMA

approach also to the passive synchronization. We expect
that the RDMA approach can give similar benefits in imple-
menting the passive synchronization. Another direction we
are currently pursuing is better support for non-contiguous
data type in one-sided communication.

References

[1] Argonne National Laboratory. MPICH2. http://www-
unix.mcs.anl.gov/mpi/mpich2/.

[2] N. Asai, T. Kentemich, and P. Lagier. MPI-2 Implementation
on Fujitsu Generic Message Passing Kernel. In SC, 1999.

[3] M. Bertozzi, M. Panella, and M. Reggiani. Design of a VIA
Based Communication Protocol for LAM/MPI Suite. In 9th
Euromicro Workshop on Parallel and Distributed Process-
ing, September 2001.

[4] D. Bonachea. GASNet Specification, v1.1. Technical Report
UCB/CSD-02-1207, Computer Science Division, University
of California at Berkeley, October 2002.

[5] S. Booth and F. E. Mourao. Single Sided MPI Implementa-
tions for SUN MPI. In Supercomputing, 2000.

[6] E. Gabriel, G. E. Fagg, and J. J. Dongarra. Evaluating the
Performance of MPI-2 Dynamic Communicators and One-
Sided Communication. In EuroPVM/MPI, September 2003.

[7] M. Goudreau, K. Lang, S. B. Rao, T. Suel, and T. Tsanti-
las. Portable and Effcient Parallel Computing Using the BSP
Model. IEEE Transactions on Computers, pages 670–689,
1999.

[8] W. Gropp, E. Lusk, N. Doss, and A. Skjellum. A High-
Performance, Portable Implementation of the MPI Message
Passing Interface Standard. Parallel Computing, 22(6):789–
828, 1996.

[9] W. Gropp, E. Lusk, and A. Skjellum. Using MPI: Portable
Parallel Programming with the Message Passing Interface,
2nd edition. MIT Press, Cambridge, MA, 1999.

[10] H. Tezuka and F. O’Carroll and A. Hori and Y. Ishikawa.
Pin-down Cache: A Virtual Memory Management Tech-
nique for Zero-copy Communication. 12th IPPS.

[11] InfiniBand Trade Association. InfiniBand Architecture
Specification, Release 1.0, October 24 2000.

[12] J. Traff and H. Ritzdorf and R. Hempel. The Implementation
of MPI-2 One-Sided Communication for the NEC SX. In
Proceedings of Supercomputing, 2000.

[13] J. Liu, W. Jiang, P. Wyckoff, D. K. Panda, D. Ashton,
D. Buntinas, W. Gropp, and B. Toonen. Design and Im-
plementation of MPICH2 over InfiniBand with RDMA Sup-
port. In proceeding of IPDPS, April 2004.

[14] Message Passing Interface Forum. MPI-2: A Message Pass-
ing Interface Standard. High Performance Computing Ap-
plications, 12(1–2):1–299, 1998.

[15] F. E. Mourao and J. G. Silva. Implementing MPI’s One-
Sided Communications for WMPI. In EuroPVM/MPI,
September 1999.

[16] J. Nieplocha and B. Carpenter. ARMCI: A Portable Remote
Memory Copy Library for Distributed Array Libraries and
Compiler Run-Time Systems. Lecture Notes in Computer
Science, 1586, 1999.

[17] OSU Network-Based Computing Laboratory. MPI
over InfiniBand Project. http://nowlab.cis.ohio-
state.edu/projects/mpi-iba/index.html, January 2003.

[18] J. Worringen, A. Gaer, and F. Reker. Exploiting Transpar-
ent Remote Memory Access for Non-Contiguous and One-
Sided-Communication. In Proceedings of the 2002 Work-
shop on Communication Architecture for Clusters (CAC),
April 2002.

8

